Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
ACS Appl Mater Interfaces ; 15(12): 15195-15202, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2264408

ABSTRACT

Rapid diagnosis of coronavirus disease 2019 (COVID-19) is key for the long-term control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amid renewed threats of mutated SARS-CoV-2 around the world. Here, we report on an electrical label-free detection of SARS-CoV-2 in nasopharyngeal swab samples directly collected from outpatients or in saliva-relevant conditions by using a remote floating-gate field-effect transistor (RFGFET) with a 2-dimensional reduced graphene oxide (rGO) sensing membrane. RFGFET sensors demonstrate rapid detection (<5 min), a 90.6% accuracy from 8 nasal swab samples measured by 4 different devices for each sample, and a coefficient of variation (CV) < 6%. Also, RFGFET sensors display a limit of detection (LOD) of pseudo-SARS-CoV-2 that is 10 000-fold lower than enzyme-linked immunosorbent assays, with a comparable LOD to that of reverse transcription-polymerase chain reaction (RT-PCR) for patient samples. To achieve this, comprehensive systematic studies were performed regarding interactions between SARS-CoV-2 and spike proteins, neutralizing antibodies, and angiotensin-converting enzyme 2, as either a biomarker (detection target) or a sensing probe (receptor) functionalized on the rGO sensing membrane. Taken together, this work may have an immense effect on positioning FET bioelectronics for rapid SARS-CoV-2 diagnostics.


Subject(s)
COVID-19 , Graphite , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Saliva
2.
ACS Appl Mater Interfaces ; 14(21): 24187-24196, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1860277

ABSTRACT

Despite intensive research of nanomaterials-based field-effect transistors (FETs) as a rapid diagnostic tool, it remains to be seen for FET sensors to be used for clinical applications due to a lack of stability, reliability, reproducibility, and scalability for mass production. Herein, we propose a remote floating-gate (RFG) FET configuration to eliminate device-to-device variations of two-dimensional reduced graphene oxide (rGO) sensing surfaces and most of the instability at the solution interface. Also, critical mechanistic factors behind the electrochemical instability of rGO such as severe drift and hysteresis were identified through extensive studies on rGO-solution interfaces varied by rGO thickness, coverage, and reduction temperature. rGO surfaces in our RFGFET structure displayed a Nernstian response of 54 mV/pH (from pH 2 to 11) with a 90% yield (9 samples out of total 10), coefficient of variation (CV) < 3%, and a low drift rate of 2%, all of which were calculated from the absolute measurement values. As proof-of-concept, we demonstrated highly reliable, reproducible, and label-free detection of spike proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a saliva-relevant media with concentrations ranging from 500 fg/mL to 5 µg/mL, with an R2 value of 0.984 and CV < 3%, and a guaranteed limit of detection at a few pg/mL. Taken together, this new platform may have an immense effect on positioning FET bioelectronics in a clinical setting for detecting SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , COVID-19/diagnosis , Graphite/chemistry , Humans , Reproducibility of Results , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Transistors, Electronic
3.
Transbound Emerg Dis ; 69(5): e1584-e1594, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1708198

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a global pandemic and continues to prevail with multiple rebound waves in many countries. The driving factors for the spread of COVID-19 and their quantitative contributions, especially to rebound waves, are not well studied. Multidimensional time-series data, including policy, travel, medical, socioeconomic, environmental, mutant and vaccine-related data, were collected from 39 countries up to 30 June 2021, and an interpretable machine learning framework (XGBoost model with Shapley Additive explanation interpretation) was used to systematically analyze the effect of multiple factors on the spread of COVID-19, using the daily effective reproduction number as an indicator. Based on a model of the pre-vaccine era, policy-related factors were shown to be the main drivers of the spread of COVID-19, with a contribution of 60.81%. In the post-vaccine era, the contribution of policy-related factors decreased to 28.34%, accompanied by an increase in the contribution of travel-related factors, such as domestic flights, and contributions emerged for mutant-related (16.49%) and vaccine-related (7.06%) factors. For single-peak countries, the dominant ones were policy-related factors during both the rising and fading stages, with overall contributions of 33.7% and 37.7%, respectively. For double-peak countries, factors from the rebound stage contributed 45.8% and policy-related factors showed the greatest contribution in both the rebound (32.6%) and fading (25.0%) stages. For multiple-peak countries, the Delta variant, domestic flights (current month) and the daily vaccination population are the three greatest contributors (8.12%, 7.59% and 7.26%, respectively). Forecasting models to predict the rebound risk were built based on these findings, with accuracies of 0.78 and 0.81 for the pre- and post-vaccine eras, respectively. These findings quantitatively demonstrate the systematic drivers of the spread of COVID-19, and the framework proposed in this study will facilitate the targeted prevention and control of the ongoing COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Animals , COVID-19/epidemiology , COVID-19/veterinary , Machine Learning , Pandemics/prevention & control , SARS-CoV-2 , Travel , Travel-Related Illness
4.
Int J Environ Res Public Health ; 18(19)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1444190

ABSTRACT

The COVID-19 pandemic has resulted in social isolation, grief, and loss among many adolescents. As the pandemic continues to impact individuals and communities across the globe, it is critical to address the psychological well-being of youths. More studies are needed to understand the effective ways adolescents cope with pandemic-related psychological distress. In this study, 146 students from 1 high school in a U.S. midwestern state completed an adapted version of Kidcope, a widely used coping instrument in disaster research, and measures were taken on generalized distress and COVID-19-related worries. Findings indicated that most students experienced COVID-19-related fears and general emotional distress. Additionally, we found that disengagement coping strategies were associated with lower general distress (p ≤ 0.05) and COVID-19 worries (p ≤ 0.10). Active coping was not associated with general distress and COVID-19 worries. Overall, our findings highlight the need to develop tailored interventions targeting youth coping strategies to reduce and prevent emotional distress and amplify healthy coping skills as the pandemic persists.


Subject(s)
COVID-19 , Pandemics , Adaptation, Psychological , Adolescent , Humans , SARS-CoV-2 , Schools , Students
5.
Microcirculation ; 28(7): e12718, 2021 10.
Article in English | MEDLINE | ID: covidwho-1236400

ABSTRACT

Recently, accumulating evidence has highlighted the role of endothelial dysfunction in COVID-19 progression. Coronary microvascular dysfunction (CMD) plays a pivotal role in cardiovascular disease (CVD) and CVD-related risk factors (eg, age, gender, hypertension, diabetes mellitus, and obesity). Equally, these are also risk factors for COVID-19. The purpose of this review was to explore CMD pathophysiology in COVID-19, based on recent evidence. COVID-19 mechanisms were reviewed in terms of imbalanced renin-angiotensin-aldosterone-systems (RAAS), systemic inflammation and immune responses, endothelial dysfunction, and coagulatory disorders. Based on these mechanisms, we addressed CMD pathophysiology within the context of COVID-19, from five perspectives. The first was the disarrangement of local RAAS and Kallikrein-kinin-systems attributable to SARS-Cov-2 entry, and the concomitant decrease in coronary microvascular endothelial angiotensin I converting enzyme 2 (ACE2) levels. The second was related to coronary microvascular obstruction, induced by COVID-19-associated systemic hyper-inflammation and pro-thrombotic state. The third was focused on how pneumonia/acute respiratory distress syndrome (ARDS)-related systemic hypoxia elicited oxidative stress in coronary microvessels and cardiac sympathetic nerve activation. Fourthly, we discussed how autonomic nerve dysfunction mediated by COVID-19-associated mental, physical, or physiological factors could elicit changes in coronary blood flow, resulting in CMD in COVID-19 patients. Finally, we analyzed reciprocity between the coronary microvascular endothelium and perivascular cellular structures due to viremia, SARS-CoV-2 dissemination, and systemic inflammation. These mechanisms may function either consecutively or intermittently, finally culminating in CMD-mediated cardiovascular symptoms in COVID-19 patients. However, the underlying molecular pathogenesis remains to be clarified.


Subject(s)
COVID-19/physiopathology , Coronary Vessels/physiopathology , SARS-CoV-2 , COVID-19/complications , COVID-19/immunology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology , Disease Progression , Endothelium, Vascular/physiopathology , Female , Humans , Inflammation/physiopathology , Male , Microcirculation/physiology , Models, Cardiovascular , Renin-Angiotensin System/physiology , Risk Factors , Thrombosis/etiology , Thrombosis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL